

Welcome to archi’s documentation!

This project is part of the work developped during my MSc’s thesis, titled “An expansion to the
CHEOPS mission official pipeline”.

In this project we proposed to expand the functionality of the CHEOPS mission official data
reduction pipeline (DRP), in a project named “An expansion foR the CHeops mission pipelIne - ARCHI
“, to maximize the scientific gains from its operation.

User Guide

	 Installation

	 Configuration

	 A quick overview

	 The User interface

	 How to access the Data

	 The Optimization routine

	 Archi versions

Tutorials

	 Light curve extraction
	How to extract Light Curves

	How to plot the outputs

Developper Documentation

	 Star operations

	 Mask definition process

	 The utility scripts

	 Outputs creation

Indices and tables

	Index

	Module Index

	Search Page

Installation

Configuration

In order to configure the behavior of the pipeline, one has to edit the configuration.yaml
file, shown in here [https://github.com/Kamuish/archi/blob/master/configuration_files/example_config_file.yaml] .

Even though everything can be configured throughout this file, it’s also possible to change any parameter from within
python, as described in Photometry Controller. Before the routines start, the passed parameters
are subjected to an analysis, to insure that all of the previded data has the correct data types.

General configurations

	
	base_folder :

	
	Path to the data folder, eg: “/home/Kamuish/data_files/CHEOPSim_job6201/”

	
	optimized_factors :

	
	path to save and load the optimized “increase factors”

	
	official_curve: Uses one of the DRP’s light curves to compare the results against our owns; The comparison is not made, if the debug parameter is set to zero.

	
	OPTIMAL

	DEFAULT

	RSUP

	RINF

	
	data_type: either choose between assuming the file structure from the simulated data or from the “real” data

	
	real

	simulated

	
	method: Format of the region in which the image will be analysed (for each star).

	
	“circle” -> uses a circular opening around each star;

	“shape” -> uses the contour of the star to create a mask

	
	initial_detect: How the centers are tracked

	
	fits : uses information from the Star Catalogue file, provided by the DRP

	dynam : uses image processing;

	
	detect_mode: How the stars are tracked

	
	“static” - Extracts the inicial position from the FITS file and, for each frame, they are rotated by the difference of the rotation angle of the satellite;

	“dynam” - in each image the contours are detected and the center of each is extrapolated using the contour’s moments;

	“offsets” - uses the “static” process and afterwards calculates the corrections for the center star position and applies it to all the points.

	
	uncertainties

	
	Enable the calculation of the uncertainties

	
	grid_bg:

	
	Size of the grid used for improved resolution. If it’s set to zero then no background grid is used. Otherwise, it needs to be a multiple of the image’s sizes (200 px)

	
	repeat_removal:

	Number of times to remove the brightest mask in the image

	
	optimize:

	
	If it’s 1 then the data files will be pre-processed to find the optimal radius, i.e. , the radii that minimizes the dispersion for each star; If it’s 0 the radii used will be the ones from the optimized_radius.json file

	
	optimization_extensions:

	
	number of times that the optimization process is expanded

	
	optim_processes:

	
	Number of cores to use for the optimization process. if it’s running on a laptop, it’s recommended to use 2 or 3

	
	fine_tune_circle:

	
	fine search for the mask best size. The step keyword has no effect over this process

	
	val_range:

	
	values that the mask size can take; used in the optimization process

	
	step:

	
	Step between mask sizes for the optimization process. Recommended to be 1

	
	headless:

	
	Is the code running on a headless server

	
	low_memory:

	
	Activate low memory mode. Recommended to be active when working with the background grids or larger data sets.

	
	CDPP_type: Which noise metric to use;

	
	K2

	Can be a function that implements a custom noise metric. should accept the flux as first input and time as the second. Only returns the noise metric

	
	debug:

	
	If it’s 1 then we will have a comparison between the data obtained using this method and the one from the official pipeline. THis comparison is only done for the center star, since the official pipeline does not work for the outer stars.

	
	plot_realtime:

	
	If it’s 1 we will see the images with the region under study marked with a circle. When it’s set to 1 the program shows a performance hit since the plot uses up some computational power. If the optimize parameter is set to 1 this one is set to 0 during the optimization process.

	
	save_gif:

	
	If set to one archi generates a gif with the stars and the masks used for each one of them

	
	show_results:

	
	Shows the photometric curve of each star

	
	export_text:

	
	export the lightcurve of the central star to a text file, including the MJD_TIME and ROLL_ANGLE

	
	export_fit :

	
	export, to FITS file, the photometric curves of all stars, calibration information and the relevant configuration values.

A Quick Overview

In this package, as we have stated, we implemented aperture photometry to all of the background stars, that are not analysed
during the official data reduction pipeline, for the CHEOPS mission.

The aperture photometry method, is schematized in the following figure, using some of the terms that will be presented in the near future.

[image: ../_images/photo_simplified_main_routine.png]

Diagram of the photometry process.

The presented diagram assumes that the optimization routine has already happened, which may not be true. Further details on the optimziation
steps are provided in Section The Optimization routine

The Photo_Controller is what controls the flow of the method, providing an easy interface for the user of the library. This “Controller” is also
schematized in the following image, and the functions are explained in the Section Photometry Controller

[image: ../_images/Photo_controller.png]

Diagram of the photometry controller.

If you do not wish to read the entire documentation, it’s possible to jump right into the Section How to extract Light Curves, where a simple use case is given,
and a small discussion is made on how we can access the data either from memory and from disk, after saving it.

User guide

Photometry Controller

This controller is the main point of access for any user, i.e. one does not need more to be able to extract Light Curves from the background stars in the CHEOPS mission;

	
class Photo_controller(job_number, config_path='configuration_files/config.yaml', no_optim=False)

	Controller class that allows an easy interface with all the important functions in the module. If the no_optim parameter is set to False,
then it automatically starts the optimization routine, at instantiation time of the class.

	
change_parameters(params_dict)

	Updates the kwargs with new values. A dictionary is passed in, with keys corresponding to parameters and each
value it’s the new configuration for that specific parameter.
At this stage no validation is made over the passed values. Such validation occurs before the routines, to make sure that the correct parameters were added.

	Parameters

	params_dict – Dictionary with the values that we wish to change

	
optimize()

	Run the optimization routine without instantiating a new object.

	
run(DataFits=None, factor=None, **kwargs)

	Calls the main method to run the star analysis pipeline

	Parameters

	
	factor – Used for the optimization process. During normal functioning process then so value should be passed

	kwargs – Config values, retrieved from the file on the class initialization

	Returns

	data_fits

	Return type

	instance of Data, with the relevant information.

Data Object

	
class Data(filename)

	Data structure to hold the information of all the stars in the field.

	Parameters

	
	base_folder – location of the folder in which all the fits files are located.

	roll_ang – rotation angle for all the images.

	imgs – all the images in the fits file.

	stars – List in which all elements are a “Star” object that holds information of one star.

	mask_type – type of mask. either circle or shape

	detect_mode – detection mode used

	init_detection_mode – initial detection mode

	mjd_time – mjd time of the observations

	
abort_process

	If the error_flag is set then the process should be aborted

	
all_curves

	Light curve of all stars, in the star numbering order (from closest to center to farthest)

	
all_uncertainties

	Light curve of all stars, in the star numbering order (from closest to center to farthest)

	
calculate_uncertainties(index)

	Trigger the calculation of the uncertainties

	Parameters

	index (int) – Image number

	
disable_star(star_number)

	Disables a star to avoid computing redundant information i.e. after the best value has been found during the
optimization process for one star, but others are still not yet optimized.
:param star_number:

	
get_image(number)

	Ask for a given image. If the background grid is in use, returns the increased image

	Parameters

	number (int) – Image number

	Returns

	image – Desired image

	Return type

	numpy array

	
static get_rot_mat(angle, clockwise)

	Returns a rotation matrix (around the origin) for a given angle
:param angle: rotation angle, in degrees
:param clockwise: True for a clockwise rotation and False for a counter clockwise rotation.
:return: rotation matrix

	
is_empty

	See if the object has been used in a run, i.e. if it has data

	Returns

	True if it is empty or an error has been raised, False otherwise

	Return type

	boolean

	
load_parameters(factor=None, **kwargs)

	Loads all the necessary information from the .fits files. Launches the routines to find the initial
position of the stars and create the corresponding masks.

Before running the internal parameters, as well as the star’s ones are removed. This was made in order to
minimize loading data from disk. However, keep in mind that the reset routine does not re-enable stars. So, if a
star was disabled in this object, then it will stay that way unless a new object is instantiated.
:param factor:
:param kwargs:

	Returns

	
	-1 – Errors were found during runtime

	0 – Everything went without problems

	
reload_images(**kwargs)

	Reload images from disk, in the case that the desired image has been deleted
:param kwargs:

	
stars

	Returns the list with all of the Star objects.
If an error has been raised, returns an empty list

Outputs

	
store_data(data_fits, job_number, singular=None, **kwargs)

	Stores the data extracted from the entire pipeline.

Like the controllers, it can work with a Data object that was used for both parts
or only for one of them.

If one wishes, it can also only create the folders and extract the data only for the chosen star.

	Parameters

	
	data_fits – Data object.

	job_number – Job number, from the supernova server. Will be used to save the parent folder inside the
kwargs[“results_folder”] to create the entire directory structure.

	singular – If it’s not None, then only that star’s light curve is saved. Only works for the “show_results”.

	kwargs – Dictionary with the configuration values. Can be obtained with the Photo_controller parameters property

Structure of the outputs

There are two different ways to get access to the data extracted from the images: from the Data object or
from the files that are written to the disk, with the store_data() function.

In memory

In order to access the data in memory, one can refer to the Data documentation and Data,
thus being able to find all that is necessary.

In Disk

There are two possible ways of storing data on disk: we either store data as a text file, whose structure does not allow for proper organization of the data, or a
fits file. We shall now look into the structure of each one of them.

Text file

	
export_txt(Data_fits, path, **kwargs)

	
	Stores the light curves on a text file with the following format:

	MJD_TIME;ROLL_ANGLE FLux <Star i> FLUX_ERR <Star i>

	Parameters

	
	Data_fits – Data object.

	path – Path in which the file shall be stored

	kwargs – Configuration values

Fits file

	
create_fits(master_folder, data_fits, **kwargs)

	
	Export the results to a fits file, containing the light curves and a correspondence of star to Cv and

	respective radius factor.

	Parameters

	
	master_folder – Path in which the data shall be stored

	data_fits – Data object.

	kwargs –

Notes

	Data stored in the header unit of the file :

	
Keyword data

method type of mask used
detect tracking method
initial initial detection method
grid size of the background grid
CDPP_TYPE CDPP algorithm in use

	In the data unit of the file, we have each star, with the corresponding

	time, rotation angle, flux values and uncertainties

The Optimization routine

The optimization process is one of the most important factors for achieving low noise on
the extracted light curves, since it allows us to tweak the mask size. The process is quite
simple, since it consists in running the algorithm with different masks sizes, and searching
the one that minimizes the CDPP.

To speed up this process, it was implemented in a concurrent way, allowing to have
multiple factors being tested at once. If the CDPP is deemed invalid, i.e. if the mask went outside of the image region, then
we attribute an arbitrarily high noise level, such as 2e7, so it’s certain that any valid values
will have a far lower noise and thus a valid mask is chosen.

If any star has a mask size that lies within a tolerance range of
the maximum value, the search for the optimal size shall continue, now with a lower limit
of the previous maximum value and an upper limit of two times the previous maximum.
This repetition has a user-defined maximum number, but we found that limiting it to 5
times is enough to find the best sizes for all the stars, when considering background grids
smaller or equal to 1800 points.

The design of the shape mask does not allow for partial increases
in the size. However, that’s not the case for the circle mask, whose radius can be increased
in fractions. So, for this mask, after finding the optimal value, a second optimization step
is launched, now searching the values within 1 unit from the optimal one, in steps of 0.1
units. We have found that gains from using smaller steps were not enough to justify the
increase in the computational cost.

What is new in archi

v1.2.1 (Current)

	
	Bug Fixes:

	
	No images were stored when a gif was set to be created

	Missing imageio in the requirements.txt

v1.2.0 (Current)

	
	New Features:

	
	Allow the user to provide a custom metric for the lightcurve noise

	
	Bug Fixes:

	
	removed critical bug when evaluating old keyword

v1.1.0

	
	New Features:

	
	Added the ability to store a gif of the star tracking routine

	Improved the logging of cases where archi fails

	If the dynam star tracking routine fails it uses the static routine to estimate the next point

	If the roll angle from the DRP fails (Nans instead of numbers) the dynam routine estimates the roll angle based on passed time between images. This is done allow the predictions to still be calculated

	
	Bug Fixes:

	
	Removed bug where the multiple processes would stay open when the workers would raise an Exception

v1.0.0

Original Version

Tutorials

How to extract Light Curves

Assuming that the user has already applied the official Data Reduction pipeline over the data set that is to be studied
and that the desired configurations have been already chosen, as specified in Section Configuration , one only has to run the following code,
to get light curves from all of the stars.

from pyarchi import Photo_controller, store_data

controller = Photo_controller(job_number = 1,
 config_path="<path_to_file>/config.yaml"
)
controller.optimize() # not needed if the optimization process has already been done
data_fits = controller.run()

store_data(data_fits, job_number = 1, **controller.parameters)

Furthermore, if we want to change the configuration parameters of archi without having to edit the configuration file, we can do the following:

from pyarchi import Photo_controller, store_data

controller = Photo_controller(job_number = 1,
 config_path="<path_to_file>/config.yaml"
)

configs_override = {'base_folder': "<new_path>",
 "grid_bg": 0,
 "initial_detect": 'dynam',
 "method": "shape",
 "detect_mode": "dynam",
 "optim_processes": n_tasks,
 "val_range": [1, 10],
 "low_memory":0,
 "fine_tune_circle":1,
 "optimize":0,
 'uncertainties': 1,
 'CDPP_type': "K2",
 "debug": 1,
 "plot_realtime": 0,
 'repeat_removal': 0}

we can override all parameters from the file. Typically, one only needs to change these

controller.change_parameters(configs_override)
data_fits = controller.run()

store_data(data_fits, job_number = 1, **controller.parameters)

If we had a data set with bright and faint stars, we would have to change the “repeat_removal” parameter, to remove the brighter regions in the image.
It is recommended to avoid more than 2 iterations, as using larger values may start recognizing regions of the background as stars.

In order to understand the organization of data inside the “data_fits” objects and the data that is stored with the “store_data” function, please
refer back to Section Structure of the outputs.

	It is highly recommended that the user builds its own routine to estimate the noise in the lightcurve. To do so, a given metric must be passed in the configs_override

	This metric will be minimized during the mask selection routine. The current version only gives the user the flux and observation time.

from pyarchi import Photo_controller, store_data

controller = Photo_controller(job_number = 1,
 config_path="<path_to_file>/config.yaml"
)
def noise_metric(flux, time):
 metric = np.std(flux)
 return metric
configs_override = {'CDPP_type': noise_metric}

How to plot the outputs

By default archi creates some plots, that are stored in the created folders, containing information of the light curves from
each star and by comparing the target one against the DRP.

However, if we want to do so manually, we can do it this way:

from pyarchi import Photo_controller, store_data
import matplotlib.pyplot as plt

controller = Photo_controller(job_number = 1,
 config_path="<path_to_file>/config.yaml"
)
controller.optimize() # not needed if the optimization process has already been done
data_fits = controller.run()

for star in data_fits.stars: # iterate through all of the stars
 plt.plot(data_fits.mjd_time, star.photom)
 plt.title(f"{star.name}")
 plt.xlabel("MJD time [days]")
 plt.ylabel("Flux [ADU]")
 plt.show()

In order to better understand what information one can get from the controller, stars and data_fits, please refer back to relevant documentation.

Stars

Star information

	
class Star(cdpp_type: str, pos=None, dist=None)

	
	Star class that holds the star information. We have a class attribute, number, that will be used to name the star.

	Each star increments this number by one.

	Parameters

	
	cdpp_type –
	CDPP algorithm; Can be a string or a function. If it is a string, it should be “K2”. Otherwise, the function should have the format

	
	def foo(flux, time):

	return metric

	pos=None – Initial position

	= None (dist) – Distance to center

Notes

	name:

	Designation of the star

	masks:

	Holds the mask used in each image.

	GP_data:

	Holds the GPs results

	positions:

	position, in pixels, of the centroid. Always on coordinates of the [200,200] grid

	init_pos:

	Initial position, in pixels, of the centroid. Always on coordinates of the [200,200] grid

	out_bound:

	An overlap between the mask and the empty region was found

	_active:

	Do we want to calculate the flux for this star

	photom:

	holds the light curve information

	debug:

	If 1 we compare the data obtained from our analysis with the one produced by the official pipeline

	
add_initial_mask(mask, factor, scaling_factor, low_memory=0)

	Initializes the Masks class

	Parameters

	
	mask – Initial mask for the star

	factor – Increase factor for the mask

	size_grid_change – Size of the background grid

	low_memory – Mode in which only the necessary information is kept during the process

	Returns

	
	0 – If no error is found

	-1 – If the factor is a negative number

	
add_mask(mask)

	Adds a mask to the Masks object

	Parameters

	mask – mask to add

	
calculate_cdpp(time=None)

	Calculates the CDPP of the light curve, in order to quantify the results

	Returns

	CDPP, CDPP_def

	Return type

	noise for my light curve and for the official one, respectively

	
change_init_pos(pos)

	Change the star’s initial position. Used when more than one initial center determination method is active
and some information needs to be overwritten
:param pos: New position for the centroid of the star (for the 1st image)

	
disable()

	Sets the flag to disable the calculation of the flux of this star.

	
enable_debug(**kwargs)

	Extracts the default data from the FITS files
:param base_folder: path to folder in which the FITS files are located

	
import_photom(photom)

	Used when loading data from disk
:param photom:

	
latest_mask

	Returns the last mask added to the star.

	
out_bounds(index)

	Take into account that star was out of bonds in a given frame

	
remove_data()

	Empty all information stored on this star. Used during the optimization process

	
update_mask(scaling_factor, index)

	Updates the mask with the information from the current image
:param scaling_factor: Size of the background grid.
:param index: Index of the current image

Initial Detection

	
centers_from_fits(primary: str, secondary: str, stars: List[T], initial_angle: float, initial_offset: List[T], **kwargs)

	Using information stored on the fits files, we determine the centers positions. The centers are determined using
relations between the differences in RA and DEC of all stars in relation to the known point : the central star.

After determining the center, we use the primary and secondary arguments to see if this function should change
the initial position of the star.

	Parameters

	
	primary (str) – Methodology to apply to the central star. If it’s fits then the initial position of that star is changed to
be the one determined here.

	secondary (str) –
	Methodology to apply to the outer stars. If it’s fits then the initial position of those stars are changed

	to be the ones determined here.

	stars (list) – List with all the stars found with the dynam method

	initial_angle (float) – Rotation angle of the satellite for the first image

	initial_offset (list) – DRP’s estimation of the central star location

	kwargs – kwargs

	Returns

	Updated list of stars, with the positions determined by the fits method

	Return type

	List

	
initial_dynam_centers(img, bg_grid, **kwargs)

	Uses the same method as the one in dynamical_centers to detect the original position of each star.
Afterwards, the positions are ordered by closeness to the center which allows us to keep the same
order as in the “fits” initial position method.
:param im: First image in the data set
:param bg_grid: Size of the background grid

Star tracking

Handler

	
star_tracking_handler(Data_fits, index, **kwargs)

	Handles the detection mode for the target star and the ones around it. Allows to have two different modes of
detection active at the same time.

	Parameters

	
	Data_fits – pyarchi.main.initial_loads.Data object.

	index – Image number

	kwargs –

	Returns

	Error code of the different star tracking methods. 0 if everything as expected
1 otherwise

	Return type

	int

Methods

	
static_method(Data_fits, img_number, primary, secondary)

	
	Rotates the points in the last know position by the corresponding rotation angle (difference between current angle

	and the one from the last image).

	Parameters

	
	Data_fits – pyarchi.main.initial_loads.Data object.

	img_number – Number of the current image

	primary – Methodology to apply to the central star. If it’s static then the central star is tracked using this method

	secondary – Methodology to apply to the outer stars. If it’s static then they are tracked using this method

	
create_predictions(Data_fits, img_number)

	
	Rotates the points in the last know position by the corresponding rotation angle (difference between current angle

	and the one from the last image), predicting the next position of the star

	Parameters

	
	Data_fits – pyarchi.main.initial_loads.Data object.

	img_number – Number of the current image

	
dynam_method(Data_fits, index, primary: str, secondary: str, repeat_removal: int)

	This function is used to calculate the position of the center of each contour. In order to do that
we calculate the moments of the image, which allows us to derive it’s “center of mass”.
All contours with less than 7 points are discarded and, to associate center to star we use the rotate_points
function to predict the center’s expected position. BY comparing the expected positions with the outputs of the
algorithm we can associate a center to each star.

If the image processing routine is not able to detect any star, the it uses the predictions to shift the masks.

	Parameters

	
	Data_fits – pyarchi.main.initial_loads.Data object.

	index – image’s number

	primary – Methodology to apply to the central star. If it’s dynam then the central star is tracked using this method

	secondary – Methodology to apply to the outer stars. If it’s dynam then they are tracked using this method

	
offsets_method(Data_fits, index, primary, secondary)

	This function expands the functionality of rotate_points. After rotating the points we calculate the offset
experienced by the central star, by calculating the deviation between the center location from the last two images.
The offset center for the central star is simply obtained from the fits files, without rotating the previous point.

	Parameters

	
	Data_fits – pyarchi.main.initial_loads.Data object.

	index – index of the image

	primary – Methodology to apply to the central star. If it’s offsets then the central star is tracked using this method

	secondary – Methodology to apply to the outer stars. If it’s offsets then they are tracked using this method

Masks

How to store them

	
class Masks(mask_factor, grid_increase, initial_mask, low_memory=0)

	Class used to hold the mask for each iteration, as well as some of some important methods

	
add_mask(mask)

	Stores a new mask. If the low memory mode is active, only two masks are stored in memory: the initial one
and the latest.

	Parameters

	mask – Mask to be added

	
all

	Return a list with all of the stored masks

	
factor

	Returns the mask’s size (i.e. circle radius or layers of pixels added to the mask)

	
first

	Returns the first mask

	
latest

	Returns the latest mask stored in the class

	
normalized_points

	Returns the number of points, normalized to the “normal” grid, with 200 by 200 px

	
number_masks

	Return the number of masks stored in the obejct

	
size

	Returns the number of pixels in the mask

	
update_mask(x_change, y_change, image_number)

	
Changes the mask to the correct position in the new image. If the grid_bg is not None, then
the calculations are made with the bigger grid.

	Parameters

	
	x_change – change in the x direction

	y_change – change in the y direction

	image_number – Current image number.

Shape Based mask

	
create_shape_mask(im, stars, increase_factor, scaling_factor, primary, secondary, bg_grid, repeat_removal=0)

	Finds the contours of the image, with openCv default functions

	Parameters

	
	im – copy of the image used for the shape detection

	stars – list of all the pyarchi.star_track.Star_class.Star objects

	increase_factor – Number of pixels added to the outside of the shape. For example, if factor = 1 then we add a layer of pixels
around the entire shape

	size_grid_change – SIze of the background grid in use

	primary – Methodology to apply to the central star. If it’s dynam then the initial position of that star is changed to
be the one determined here.

	secondary – Methodology to apply to the outer stars. If it’s dynam then the initial position of those stars are changed to
be the ones determined here.

	repeat_removal – Number of times that we wish to remove the brightest mask from the image, to search for fainter stars

	Returns

	Dictionary where the keys are the number of the star and the values the corresponding mask

	Return type

	masks_dict

Circular mask

	
create_circular_mask(img, stars, radius, primary, secondary)

	Defines a circular mask for all the stars, with a pre determined radius. If a size_grid_change is different than
zero
it converts the mask to that grid size

	Parameters

	
	stars – list of all the pyarchi.star_track.Star_class.Star objects

	img – First image

	radius – radius of the circles. Can be a general radius(same for all the stars) or a dict with different radii,

	which the keys are the indexes and the values are the radius (in) –

	size_grid_change – size of the bigger grid, to which we can convert the mask. If it’s zero we don’t convert. Otherwise it is
converted

	primary – Methodology to apply to the central star. If it’s fits then the initial position of that star is changed to
be the one determined here.

	secondary – Methodology to apply to the outer stars. If it’s fits then the initial position of those stars are changed to
be the ones determined here.

	Returns

	Dictionary where the keys are the number of the star and the values the corresponding mask

	Return type

	masks_dict

Utility scripts

data_export

	
photo_SaveInfo(path, data_fits)

	Stores information related to the photometric run.

	In specific:

	
	which file was used

	mask type

	detect mode

	background grid

	all star related info

	Parameters

	
	path – path in which the file will be stored

	data_fits – Data object.

For details on the functions that write to disk refer to Section Structure of the outputs.

factors_handler

noise_metrics

	
CDPP(flux_vals, times, sized=41, winlen=10, win=30, outl=True)

	Ported version of the K2 CDPP algorithm, implemented by Pedro Silva

	Parameters

	
	flux_vals – flux values

	times – time array

	sized – Since we are calculating the CDPP for 1 hour. Window for the Savgol filter

	winlen – Convolution window

	win – Time over which we want to calculate the CDPP

	outl – Remove the outliers.

	
Interpolate(time, mask, y)

	Masks certain elements in the array y and linearly
interpolates over them, returning an array y’ of the
same length.

	Parameters

	
	time (array_like) – The time array

	mask (array_like) – The indices to be interpolated over

	y (array_like) – The dependent array

	
SavGol(y, win=49)

	Subtracts a second order Savitsky-Golay filter with window size win
and returns the result. This acts as a high pass filter.

	
Scatter(y, win=13, remove_outliers=False)

	Return the scatter in ppm based on the median running standard deviation
for a window size of win = 13 cadences (for K2, this
is ~6.5 hours, as in VJ14).

	Parameters

	
	y (ndarray) – The array whose CDPP is to be computed

	win (int) – The window size in cadences. Default 13

	remove_outliers (bool) – Clip outliers at 5 sigma before computing the CDPP? Default False

	
Smooth(x, window_len=100, window='hanning')

	Smooth data by convolving on a given timescale.

	Parameters

	
	x (ndarray) – The data array

	window_len (int) – The size of the smoothing window. Default 100

	window (str) – The window type. Default hanning

optimization

	
optimizer(value_range, max_process, func, data_f, file_path, to_disable=[], **kwargs)

	Decides which factors will be used in each process that it spawns. After the processes are done, extracts the
resulting data from the Queue and parses it, in order to find the noise values and mask factors. Writes to a .txt
file the resulting values for each factor. Take note that the values are not guaranteed to be in order, since they
are saved in the order “imposed” by the processes.
:param value_range: Lower and upper limit of the values to be tested
:param max_process: Maximum number of processes that can be launched during this routine
:param func: function that launches the photometric process
:param data_f: pyarchi.main.initial_loads.Data object with all the stars information inside
:param file_path: Path in which run time information shall be stored
:param kwargs:

	Returns

	
	min_cvs – list with the minimum noise found

	optimized_dict – Dictionary in which the keys are the star numbers and the values are the optimal factors

	
run_function(queue, func, factors, data_f, to_disable=[], **kwargs)

	Run each interaction of the function and returns the results ordered on a dictionary

	Parameters

	
	queue –

	func –

	factors –

	
circular_tuner(best_values, max_process, func, data_f, file_path, to_disable=[], **kwargs)

	Decides which factors will be used in each process that it spawns. After the processes are done, extracts the
resulting data from the Queue and parses it, in order to find the noise values and mask factors. Writes to a .txt
file the resulting values for each factor. Take note that the values are not guaranteed to be in order, since they
are saved in the order “imposed” by the processes.
:param value_range: Lower and upper limit of the values to be tested
:param max_process: Maximum number of processes that can be launched during this routine
:param func: function that launches the photometric process
:param data_f: pyarchi.main.initial_loads.Data object with all the stars information inside
:param file_path: Path in which run time information shall be stored
:param kwargs:

	Returns

	
	min_cvs – list with the minimum noise found

	optimized_dict – Dictionary in which the keys are the star numbers and the values are the optimal factors

	
run_function(queue, func, factors, data_f, to_disable=[], **kwargs)

	Run each interaction of the function and returns the results ordered on a dictionary

	Parameters

	
	queue –

	func –

	factors –

	
general_optimizer(func, data_f, job_number, max_process, **kwargs)

	Responsible for setting up the variables used during the optimization process.

If the factor determined to be the best one is near the upper limit, then the range of values is extended and a new
search for minimum noise starts. If the determined factor is inside a “safe” distance away from the highest possible
value then the star is disabled and no further studies are made on it.

Also responsible for creating .txt files with all the relevant information
:param func: function that launches the photometric process
:param data_f: pyarchi.main.initial_loads.Data object with all the stars information inside
:param job_number: JOb number assigned by the SLURM workload manager
:param max_process: Maximum number of processes that can be launched during this routine

	Returns

	Dictionary in which the keys are the star numbers and the values are the optimal factors

	Return type

	optimized_dict

misc

	
parameters_validator(**kwargs)

	Loads the configuration parameters from the .yaml file. After loading,
it checks some of the parameters to see if they have valid values.

	Parameters

	parameters –

	
path_finder(mode, off_curve=None, **kwargs)

	Searches inside the base folder for the desired files

	Parameters

	
	mode –
	subarray: retrieves the subarray file path

	default: default lightcurve

	stars : path for the Star catalogue file

	kwargs –
	config values

	
matrix_clockwise(angle)

	Creates a rotation matrix for clockwise rotations.
Expects an angle in degrees

	Parameters

	angle – rotation angle, in degrees.

	Returns

	counter clockwise rotation matrix

	
matrix_cnter_clock(angle)

	Creates a rotation matrix for counter clockwise rotations.
Expects an angle in degrees

	Parameters

	angle – rotation angle, in degrees.

	Returns

	counter clockwise rotation matrix

	
my_timer(orig_func)

	Decorator to measure the time spent on the function
:param orig_func: FUnction to be analysed

Output creation

Internal interface

	
photom_plots(data_fits, master_folder, singular=None, **kwargs)

	Processes the data collected from the images and outputs the desired graphs.

	Parameters

	
	data_fits – Data object with all the stars information inside

	singular – If it’s not None, then only that star’s light curve is saved. Only works for the “show_results”.

	master_folder – Root folder in which all the data shall be stored

	kwargs – Configuration values that are used to change the data processed and the output data:

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyarchi	

 	
 	
 pyarchi.data_objects.Data	

 	
 	
 pyarchi.data_objects.Mask	

 	
 	
 pyarchi.initial_detection.dynam_method	

 	
 	
 pyarchi.initial_detection.fits_method	

 	
 	
 pyarchi.masks_creation.circular_mask	

 	
 	
 pyarchi.masks_creation.shape_mask	

 	
 	
 pyarchi.output_creation.photometry_outputs	

 	
 	
 pyarchi.output_creation.storage_handler	

 	
 	
 pyarchi.routines.Photo_Controller	

 	
 	
 pyarchi.star_track.dynamical_centers	

 	
 	
 pyarchi.star_track.offset_centers	

 	
 	
 pyarchi.star_track.star_tracking_handler	

 	
 	
 pyarchi.star_track.static_method	

 	
 	
 pyarchi.utils.data_export.export_fits	

 	
 	
 pyarchi.utils.data_export.export_photo_info	

 	
 	
 pyarchi.utils.data_export.export_txt	

 	
 	
 pyarchi.utils.factors_handler	

 	
 	
 pyarchi.utils.misc.logger_setup	

 	
 	
 pyarchi.utils.misc.parameters_validator	

 	
 	
 pyarchi.utils.misc.path_searcher	

 	
 	
 pyarchi.utils.misc.rotation_mats	

 	
 	
 pyarchi.utils.misc.timer	

 	
 	
 pyarchi.utils.noise_metrics.CDPP	

 	
 	
 pyarchi.utils.optimization.circular_fine_tune	

 	
 	
 pyarchi.utils.optimization.optimizer	

 	
 	
 pyarchi.utils.optimization.threaded_optimization	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | U

A

 	
 	abort_process (Data attribute)

 	add_initial_mask() (Star method)

 	add_mask() (Masks method)

 	(Star method)

 	
 	all (Masks attribute)

 	all_curves (Data attribute)

 	all_uncertainties (Data attribute)

C

 	
 	calculate_cdpp() (Star method)

 	calculate_uncertainties() (Data method)

 	CDPP() (in module pyarchi.utils.noise_metrics.CDPP)

 	centers_from_fits() (in module pyarchi.initial_detection.fits_method)

 	change_init_pos() (Star method)

 	
 	change_parameters() (Photo_controller method)

 	circular_tuner() (in module pyarchi.utils.optimization.circular_fine_tune)

 	create_circular_mask() (in module pyarchi.masks_creation.circular_mask)

 	create_fits() (in module pyarchi.utils.data_export.export_fits)

 	create_predictions() (in module pyarchi.star_track.dynamical_centers)

 	create_shape_mask() (in module pyarchi.masks_creation.shape_mask)

D

 	
 	Data (class in pyarchi.data_objects.Data)

 	disable() (Star method)

 	
 	disable_star() (Data method)

 	dynam_method() (in module pyarchi.star_track.dynamical_centers)

E

 	
 	enable_debug() (Star method)

 	
 	export_txt() (in module pyarchi.utils.data_export.export_txt)

F

 	
 	factor (Masks attribute)

 	
 	first (Masks attribute)

G

 	
 	general_optimizer() (in module pyarchi.utils.optimization.threaded_optimization)

 	
 	get_image() (Data method)

 	get_rot_mat() (Data static method)

I

 	
 	import_photom() (Star method)

 	initial_dynam_centers() (in module pyarchi.initial_detection.dynam_method)

 	
 	Interpolate() (in module pyarchi.utils.noise_metrics.CDPP)

 	is_empty (Data attribute)

L

 	
 	latest (Masks attribute)

 	
 	latest_mask (Star attribute)

 	load_parameters() (Data method)

M

 	
 	Masks (class in pyarchi.data_objects.Mask)

 	matrix_clockwise() (in module pyarchi.utils.misc.rotation_mats)

 	
 	matrix_cnter_clock() (in module pyarchi.utils.misc.rotation_mats)

 	my_timer() (in module pyarchi.utils.misc.timer)

N

 	
 	normalized_points (Masks attribute)

 	
 	number_masks (Masks attribute)

O

 	
 	offsets_method() (in module pyarchi.star_track.offset_centers)

 	optimize() (Photo_controller method)

 	
 	optimizer() (in module pyarchi.utils.optimization.optimizer)

 	out_bounds() (Star method)

P

 	
 	parameters_validator() (in module pyarchi.utils.misc.parameters_validator)

 	path_finder() (in module pyarchi.utils.misc.path_searcher)

 	Photo_controller (class in pyarchi.routines.Photo_Controller)

 	photo_SaveInfo() (in module pyarchi.utils.data_export.export_photo_info)

 	photom_plots() (in module pyarchi.output_creation.photometry_outputs)

 	pyarchi.data_objects.Data (module)

 	pyarchi.data_objects.Mask (module)

 	pyarchi.initial_detection.dynam_method (module)

 	pyarchi.initial_detection.fits_method (module)

 	pyarchi.masks_creation.circular_mask (module)

 	pyarchi.masks_creation.shape_mask (module)

 	pyarchi.output_creation.photometry_outputs (module)

 	pyarchi.output_creation.storage_handler (module)

 	pyarchi.routines.Photo_Controller (module)

 	pyarchi.star_track.dynamical_centers (module)

 	
 	pyarchi.star_track.offset_centers (module)

 	pyarchi.star_track.star_tracking_handler (module)

 	pyarchi.star_track.static_method (module)

 	pyarchi.utils.data_export.export_fits (module)

 	pyarchi.utils.data_export.export_photo_info (module)

 	pyarchi.utils.data_export.export_txt (module)

 	pyarchi.utils.factors_handler (module)

 	pyarchi.utils.misc.logger_setup (module)

 	pyarchi.utils.misc.parameters_validator (module)

 	pyarchi.utils.misc.path_searcher (module)

 	pyarchi.utils.misc.rotation_mats (module)

 	pyarchi.utils.misc.timer (module)

 	pyarchi.utils.noise_metrics.CDPP (module)

 	pyarchi.utils.optimization.circular_fine_tune (module)

 	pyarchi.utils.optimization.optimizer (module)

 	pyarchi.utils.optimization.threaded_optimization (module)

R

 	
 	reload_images() (Data method)

 	remove_data() (Star method)

 	
 	run() (Photo_controller method)

 	run_function() (in module pyarchi.utils.optimization.circular_fine_tune)

 	(in module pyarchi.utils.optimization.optimizer)

S

 	
 	SavGol() (in module pyarchi.utils.noise_metrics.CDPP)

 	Scatter() (in module pyarchi.utils.noise_metrics.CDPP)

 	size (Masks attribute)

 	Smooth() (in module pyarchi.utils.noise_metrics.CDPP)

 	
 	Star (class in pyarchi.data_objects.Star_class)

 	star_tracking_handler() (in module pyarchi.star_track.star_tracking_handler)

 	stars (Data attribute)

 	static_method() (in module pyarchi.star_track.static_method)

 	store_data() (in module pyarchi.output_creation.storage_handler)

U

 	
 	update_mask() (Masks method)

 	(Star method)

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to archi’s documentation!

 		
 Installation

 		
 Configuration

 		
 General configurations

 		
 A quick overview

 		
 The User interface

 		
 Photometry Controller

 		
 Data Object

 		
 Outputs

 		
 How to access the Data

 		
 In memory

 		
 In Disk

 		
 Text file

 		
 Fits file

 		
 The Optimization routine

 		
 Archi versions

 		
 v1.2.1 (Current)

 		
 v1.2.0 (Current)

 		
 v1.1.0

 		
 v1.0.0

 		
 Light curve extraction

 		
 How to extract Light Curves

 		
 How to plot the outputs

 		
 Star operations

 		
 Star information

 		
 Initial Detection

 		
 Star tracking

 		
 Handler

 		
 Methods

 		
 Mask definition process

 		
 How to store them

 		
 Shape Based mask

 		
 Circular mask

 		
 The utility scripts

 		
 data_export

 		
 factors_handler

 		
 noise_metrics

 		
 optimization

 		
 misc

 		
 Outputs creation

 		
 Internal interface

_images/Photo_controller.png
Photo_Controller

Internal optimize

Optimize parameters change_parameters

_images/photo_simplified_main_routine.png
Initialized Photo_Controller

— Load data from fts

Find Inital positions

load_parameters()

Create masks

Calculate forbidden region

Yes / Passed N\ No
through il Update all positions
images?

Passed through
all stars for
this image?

Validate mask Yes

End of the routine positon for each star|

Update mask|

calculate flux

